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I n the last few years, hardly a day goes by that we do not 
hear about the latest advancements and improvements 
that Artificial Intelligence (AI) has brought to a wide 

spectrum of domains: from technology and medicine to sci-
ence and sociology, and many others. AI is one of the core 
enabling components of the fourth industrial revolution that 
we are currently witnessing, and the applications of AI are 
truly transforming our world and impacting all facets of so-
ciety, economy, living, working, and technology. The field of 
Instrumentation and Measurement (I&M) is no exception, 
and has already been impacted by Applied AI. In this article, 
we give an overview of Applied AI and its usage in I&M. We 
then take a deeper look at the I&M applications of one specific 
AI method: Deep Learning (DL), which has recently revolu-
tionized the field of AI. Our survey of DL papers published 
in the IEEE Transactions on Instrumentation and Measurement 
(IEEE TIM) and IEEE Instrumentation & Measurement Magazine 
showed that, since 2017, there is a very strong interest in apply-
ing DL methods to I&M, in terms of measurement, calibration, 
and other I&M challenges. In particular, of the 32 surveyed pa-
pers, 75% were published in 2017 or later, and a remarkable 
50% were published in 2019 alone. Considering that 2019 was 
not yet finished when we were writing this article, the recent 
exponential interest in and impact of DL in I&M is a very evi-
dent trend. We also found that although DL is used in a variety 
of I&M topics, a considerable portion of DL in I&M focuses on 
Vision Based Measurement (VBM) systems (around 28%) and 
fault/defect diagnosis/detection/prediction (around 25%). 
Finally, we found that Convolutional Neural Networks are the 
most widely used DL technique in I&M, especially in VBM. 
But to explain all of the above findings, we first need to under-
stand AI itself and what we mean by it in its applied context. So 
let us begin our discussion with Applied AI.

Applied Artificial Intelligence
Although the long-term goal of research in AI is to enable 
machines to have the same level of intelligence as animals or hu-
mans, it is important to note that the Applied AI of today is not 
really comparable to biological intelligence. In fact, the word 

Intelligence in the Applied AI of today is misleading for the com-
mon person, as it gives the person the wrong impression that he 
or she is dealing with an intelligent being manifested as AI. This 
becomes even more misleading if we consider that we do not 
even have a universally agreed-upon definition of intelligence! 
In other words, experts do not yet completely understand or 
agree what intelligence is. So, then, how can we call something 
artificial intelligence if we do not even know what intelligence is? 
This has been an ongoing debate among AI experts for a long 
time. For brevity, in this article we do not enter this debate, and 
we refer the interested readers to other sources such as [1].

So, what does it mean when we talk about Applied AI in 
today’s context, if it does not mean biological intelligence? 
Today, Applied AI practically means the application of AI 
methods as tools to advance or improve a system in a given do-
main; for example using AI methods to improve the weather 
forecasting system in meteorology, increase the efficiency of 
warehouse logistics in the storage and shipping industry, ob-
tain earlier diagnosis of diseases in medicine, or in the I&M 
domain, reduce complexity of a measurement method or in-
crease accuracy of a measurement instrument. Researchers 
expect that, in the future, these AI methods will match or even 
surpass human intelligence. But today we are neither close 
to that goal, nor do we need to be close in the applied arena, 
because AI methods as they are today are already having a 
beneficial impact on existing systems. 

So, what are these methods? Fig. 1 shows some of AI’s most 
commonly applied methods, which are normally inspired by 
how the biological brain works, referred to as computational 
intelligence [2]; for example, artificial neural networks try to 
emulate the neural networks in a biological brain, or fuzzy logic 
tries to operate similar to how humans make decisions without 
complicated mathematical modeling and using only impre-
cise or vague information. What has made Applied AI such a 
disruptive technology is the fact that these methods allow us 
to do tasks such as classification, clustering, prediction, deci-
sion making, and optimization without the need to first build 
an analytical model of the problem or the system at hand. This 
is very important, so let us take a closer look at this.
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Most of these methods take as input a set of previously gath-
ered data and try to come up with a model that best matches this 
input data to the desired output. This model can then be used 
to obtain output values for new incoming data. This means that 
the model that an AI method creates is purely based on match-
ing input to output (black box), unlike the analytical model that 
a domain expert creates (white box). For example, let us say 
we want to create a system that detects skin cancer from the 
image of a patient’s skin lesions. To create such a system ana-
lytically, a biomedical engineer needs to develop an analytical 
model based on the skin lesions’ shape, pattern, brightness, co-
lour, concentration, area, and many other parameters, some of 
which are complicated to model, impossible to model, or sim-
ply unknown. Development of such an analytical model could 
be very complex, especially if the model needs to be generaliz-
able; i.e., working for any random skin type or color. There are 
too many parameters here to come up with a general model 
that would work with acceptable accuracy. But, if we use an AI 
method, for example a machine learning algorithm, we only 
need to train it with a large-enough dataset of previously taken 
images of skin lesions with and without cancer. The method 
then creates its own model of how to match features in those 
images to whether or not cancer is present. This not only signif-
icantly reduces complexity, but also in some cases gives an even 
better result than an analytical model. Of course, the accuracy 
of this AI-based model depends on the specific AI method and 
algorithm selected, as well as the quality of the provided data-
set. With this explanation of Applied AI in mind, let us now take 
a look at how we can use it in I&M.

Applied AI in I&M
Looking at the scope webpage of IEEE Transactions on Instru-
mentation & Measurement (IEEE TIM), (http://tim.ieee-ims.
org), we can say that I&M as a research field is interested in 

contributions to “meth-
ods or instruments for 
measurement, detection, 
tracking, monitoring, char-
acterization, identification, 
estimation, or diagnosis of 
a physical phenomenon; 
uniqueness of an applica-
tion furthering the I&M 
fields; or measurement 
theory including uncer-
tainty, calibration, etc.” The 
popularity of AI in I&M is 
therefore not surprising, 
considering that AI meth-
ods are quite suitable for 
detection, tracking, mon-
itoring, characterization, 
identification, estimation, 
diagnosis, or prediction. 
In fact, the huge potential 
of using AI in I&M was al-

ready noticed by the 1990s, for example in [3], which describes 
very well neural networks, fuzzy logic, and expert systems, 
plus their applications in I&M, such as sensor design, calibra-
tion, uncertainty prediction, measurement data interpolation, 
software instruments, indirect measurement, fault detection, 
and system identification. AI is especially practical when the 
precise and accurate mathematical modeling of the measure-
ment system or instrument at hand is highly complex, highly 
nonlinear, highly dynamic, or impossible due to lack of knowl-
edge of the system except for a limited number of parameters. 
In such cases, or when the accuracy of the final measurement 
is more important than understanding exactly how the sys-
tem works, AI can offer an attractive and practical solution. 
One example that well illustrates the above notion is Vision-
Based Measurement (VBM) [4], which requires AI as a core 
component. An example of a VBM system is [5], which indi-
rectly measures the amount of calories and nutrition in food 
from the food’s picture. Such a system would simply not be 
implementable without AI, due to the highly complex nature 
of the problem and lack of complete knowledge of all param-
eters. Another area where AI can be applied is calibration, for 
example in [6], where a picture of the user’s hand is used to 
easily calibrate a complex force measuring instrument. Mea-
surement prediction is another useful feature of AI, which can 
be applied when actual measurement is either costly or im-
practical. For example, in a massively multisource networked 
system, it is not possible to explicitly measure the end-to-end 
delay between all pairs of nodes on the network, due to the 
O(N2) complexity of the problem. In such a case, AI has been 
shown to predict measurements more accurately and orders of 
magnitude faster than non-AI techniques [7].

In Fig. 1 we can also see Deep Learning (DL), the main sub-
ject of this article. Although DL has existed since the 1980s [8], 
it wasn’t until 2011 and 2012 that it caused significant publicity 

Fig. 1. Some of the most-commonly used Applied AI methods. Deep Learning, the subject of this article, is indicated in 
orange. Note that the methods shown in the figure are not exhaustive.
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among researchers and practitioners, when DL-based visual 
object recognition systems such as IDSIA and AlexNet beat 
out their competition by huge margins in terms of improved 
error rate [9], thanks partly to GPUs providing the significant 
speed up needed by DL. Another reason for their popularity is 
that DL algorithms automate the process of extracting discrim-
inative features in a dataset, which usually requires domain 
knowledge and significant human efforts [10]. This is why DL 
has revolutionized Applied AI in recent years. To understand 
how DL can achieve such great results, and how it is being 
used in I&M, let us now take a look at the basics of DL.

Deep Learning Basics
A basic understanding of neural networks, as described in [3], 
can be helpful to the readers here. A DL algorithm is based 
on a layered architecture of data representation in which the 
high-level features are extracted from the last layers of the neu-
ral network while the low-level features are extracted from the 
lower layers [11]. The true inspiration behind such an archi-
tecture is to mimic how the biological brain works—as brains 
extract data representation from an input, e.g., scene informa-
tion from the eyes, the generated output is a classified object [11].

One main capability of DL is to extract complex features 
from a huge amount of data and discover hidden patterns and 
trends in them. This is achieved by the utilization of a neural 
network that is constituted by a set of interconnected neurons 
(computational or processing units). A single neuron receives 
data from inputs or other neurons, multiplies them with 
weights and then feeds them through an activation function to 
produce an output as depicted in Fig. 2.

In a neural network, neurons are organized into an input 
layer, one or more hidden layers, and an output layer as shown 
in Fig. 3. The input layer is composed of input neurons that feed 
in the input data. A hid-
den layer receives its input 
data either from the input 
layer neurons or the neu-
rons of a preceding hidden 
layer. Hidden layers per-
form intensive processing 
of the data that were origi-
nally supplied by the input 
layer. Apparently, the more 
hidden layers the neural 
network has, the deeper and 
more intense processing 
the data go through. In case 
the neural network archi-
tecture is designed with 
two or more hidden layers, 
we end up with a DL archi-
tecture. Definitely, the use 
of more hidden layers en-
tails the need for higher 
computational and pro-
cessing capability, an area 

that GPUs can assist tremendously. Finally, the output layer 
produces the final output of the neural network.

How a DL algorithm learns about features and manages 
to extract them depends on the availability of the training da-
taset. Like any machine learning technique, the DL approach 
of learning can be done as either supervised learning or un-
supervised learning. In supervised learning, the dataset is 
comprised of labeled data. That is, we deal with input data for 
which the respective output is known and defined. In unsu-
pervised learning, however, we deal with unstructured data 
for which the output is unknown.

Training the DL network with the training dataset works as 
follows. As data flows from the input layer to the first hidden 
layer, the neurons in this layer use their activation functions to 

Fig. 2. A depiction of the operation of a neuron: it receives inputs (like x1 and 
x2), multiplies them with weights (like w1 and w2), sums up the multiplication 
results, and finally passes the sum to an activation function that produces the 
output f (x,w).

Fig. 3. Architecture of a neural network. The W1, W2, ... , W14 parameters are the weights of the connections.
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produce outputs, as explained earlier, that are fed into the sec-
ond hidden layer. The latter repeats what the previous hidden 
layer performed and feeds its outputs as inputs into the next 
hidden layer. This process is repeated until the output layer 
produces the final output. If the final output differs from the 
foreseen output, the weights on the connections between the 
layers are adjusted and the whole process is repeated starting 
from the input layer. In each iteration of training, the amount 
of deviation between the generated output and the expected 
output is measured; this is referred to as the loss function. The 
ultimate goal is to bring the loss function as close to zero as 
possible, making the DL algorithm more accurate in extracting 
the correct features or patterns from a given set of input data. 
But this also means that DL inherently has some level of uncer-
tainty, which we discuss next.

Uncertainty in Deep Learning
DL applications vary in the level of uncertainty they can tol-
erate. While we can tolerate most Siri mistakes that appear 
regularly, critical applications like autonomous driving or 
content filtering for copyright legislation require models with 
much less uncertainty in their predictions. Therefore, let us 
shed some light on the uncertainty in DL techniques and how 
it is addressed by researchers.

Like any other measurement system, two types of effects 
can contribute to uncertainty in a DL system, namely: sys-
tematic and random [12]. Systematic effects occur when the 
DL system is trained with a dataset that is not sufficiently rep-
resentative of the entire input domain, or if the DL model 
underfits the training data. Even if a DL model does not un-
derfit the training data, it can reasonably predict measurement 
results based on data patterns that it has been trained with be-
fore; uncertainty may rise when it is fed with data patterns that 
it is seeing for the first time. This can be improved by training 
the DL with more generalizable data, and with using better hy-
pothesis functions. Random effects, on the other hand, arise if 
during prediction (not during training) the DL model slightly 
changes, such as with Monte Carlo Dropout, which causes the 
DL model to produce different outputs for the same input de-
pending on the nodes that 
are dropped. These ran-
dom effects will be larger 
if the DL model suffers 
from overfitting during 
training. Whether we are 
dealing with systematic or 
random effects, it is essen-
tial to quantify the level 
of uncertainty associated 
with the DL techniques. In 
DL, we can typically use 
the following methods to 
quantify the uncertainty 
[13]: Monte-Carlo Drop-
out, Deep Ensembles (e.g., 
Distributional Parameter 

estimation or Ensemble Averaging), Dropout Ensembles, 
Quantile Regression, and Gaussian Process Inference. Details 
are beyond the scope of this article, and in fact we are writing 
an article just about uncertainty in DL-based measurements 
which we hope will be published in this same magazine in the 
near future. With the above general description about DL and 
its uncertainty in mind, let us now take a look at specific DL 
techniques used in practice.

Deep Learning Techniques
The DL techniques that we observed in our literature search 
include recurrent neural networks, convolutional neural net-
works, deep Boltzmann machines, deep belief networks, 
generative adversarial networks, and autoencoders.

Recurrent Neural Networks
Recurrent neural networks (RNNs) are developed to process 
sequential information. In these networks, the same task is ap-
plied for every element in the sequence of information, with 
the output being dependent on the previous computations 
[14]; thus, the name recurrent. The typical architecture of an 
RNN is illustrated in Fig. 4a. In this figure, N designates part of 
a neural network, Xt refers to inputs over time, and Yt refers to 
the corresponding outputs over time.

It is quite convenient to unfold the architecture in Fig. 4a to 
look like the one in Fig. 4b. In this figure, we can clearly see that 
a type of memory is employed in RNNs where the information 
that has been calculated till time t is preserved. One popu-
lar model for an RNN is the long short-term memory (LSTM) 
model that was proposed by Gers and Schmidhuber in [15]. Typ-
ical applications that benefit from RNNs are speech recognition, 
language modeling, translation, and image captioning [14].

Convolutional Neural Networks
Convolutional neural networks (CNNs) employ convolu-
tional layers, subsampling (pooling) layers, and a final stage of 
a fully connected layer, as illustrated in Fig. 5. These networks 
are named convolutional due to their use of the convolution 
mathematical operation in their feature extraction process. 

Fig. 4. a) The typical architecture of an RNN. b) Unfolded RNN architecture.
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Both convolution and subsampling layers are used for fea-
ture extraction. Specifically, as shown in Fig. 5, convolution 
layers produce feature maps while subsampling layers reduce 
the sizes of these maps without losing the key information in 
them. The final output of these layers is fed into the fully con-
nected layer which handles the task of classification. CNNs are 
typically used in computer vision and speech recognition ap-
plications [11].

Deep Boltzmann Machines and Deep Belief 
Networks
In a Boltzmann machine, nodes are fully connected to each 
other using undirected edges, as shown in Fig. 6a. The nodes 
are divided into visible and hidden nodes, with no output 
layer of nodes. In restricted Boltzmann machines (RBMs), 
however, the visible nodes are only connected to hidden 
nodes, and vice versa. Deep Boltzmann machines (DBMs) are 
formed by stacking RBMs on top of each other. The hidden 

nodes form full connectiv-
ity across subsequent layers. 
The visible nodes are the ones 
that receive the training set of 
data. Compared to other DL 
networks, DBMs are unique 
in that the input visible nodes 
are connected to each other. 
The ultimate goal of a DBM 
is to detect the distribution of 
the given input training da-
taset. Typical applications of 
DBMs are speech and object 
recognition [11]. 

Deep bel ief  networks 
(DBNs) are based on stacking RBM layers on top of each other. 
However, while top layers have undirected edges, lower lay-
ers have directed ones, as shown in Fig. 6b. 

Generative Adversarial Networks
Generative adversarial networks (GANs) suggest an approach 
for maximum likelihood estimation and employ two neural net-
works that compete against each other in a zero-sum game [16]. 
Basically, the GAN architecture utilizes a generator model and a 
discriminator model. The generator is the system that is trained 
to generate images, while the discriminator is the system that 
classifies these images as accurate or not. This process of image 
generation and classification is repeated until the generator is able 
to produce accurate results. Examples of applications of GANs 
include game development and artificial video generation [16].

Autoencoder
Autoencoding is a DL algorithm that efficiently com-

presses information and 
learns how to reproduce ac-
curate approximation of the 
original information from 
the compressed data. Since 
they are used for data com-
pression, autoencoders are 
efficient tools for dimension-
ality reduction. Typical where 
autoencoders are applied in-
clude data denoising and 
dimensionality reduction for 
data visualization [14].

Deep Learning in 
Instrumentation 
and Measurement
Here, we describe examples 
of how DL is being used in 
I&M literature, with a note 
that our search was inex-
haustive and mostly limited 
to DL papers appearing in 

Fig. 5. Typical architecture of a CNN.

Fig. 6. a) Deep Boltzmann machine (DBM). The black nodes are hidden neurons while the white nodes are visible 
neurons. b) Architecture of the deep belief network (DBN). The black nodes are hidden neurons and organized into 
several layers while the white nodes are visible neurons. Lower layers use directed edges as opposed to fully 
undirected edges in DBMs.
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IEEE TIM. We categorize the examples based on the DL tech-
nique used.

CNN
CNN has been used extensively in VBM systems. For example, 
a three-stage automatic defect inspection system for high-
speed railways has been proposed in PVANET++ [17]. As split 
pins have a key role in fixing joint components on catenary 
support devices (CSDs), PVANET++ localizes and inspects 
split pins by using CNN to detect defects. Another system uses 
a two-stage deep CNN to detect insulator surface defects in 
railway catenary [18] by firstly localizing the catenary compo-
nents to obtain images of the insulators, and then using a deep 
material classifier and a deep denoising autoencoder to detect 
defects. Since the defect detection of the fasteners on a CSD is 
essential for both safety and cost reductions in the operation 
of high-speed railways, a VBM method based on a deep CNN 
[19] is used to tackle the design of such detection systems.

A VBM system for the purpose of measuring pain intensity 
through the analysis of facial expressions is presented in [20] 
which uses the aforementioned AlexNet architecture to extract 
critical features from patients’ images and to draw conclusions 
on the level of pain they are experiencing. The work in [21] pro-
poses a vision-based evaluation (VBE) framework for VBM 
systems that studies the capability of DL strategies to deal with 
uncertainty contributions, a very important issue in I&M. This 
framework is also centered around an AlexNet-based CNN and 
handles uncertainty contributions during calibration processes. 
Another VBM system is presented in [22] which uses both CNN 
and DBM to design a food recognition system that analyzes pic-
tures of meals, taken by a mobile device, to identify different food 
items and estimate their calories and nutrition. Yet another VBM 
system [23] tackles thermal image processing. A dataset of high-
resolution thermal facial images is built and used to train the deep 
alignment network (DAN) algorithm (which is based on CNN) 
for face analysis. CNN is also used in robotic VBM systems, 
for example [24] uses a Faster Region CNN to aid robots in the 
recognition of hand gesture, while [25] introduces a projection al-
gorithm to generate RGB, depth, and intensity (RGB-DI) images 
to measure the outdoor environments with a variable resolution. 
A full CNN is then used to segment those RGB-DI images and use 
them to realize the 3-D scene understanding for mobile robots.

The application of DL principles in light detection and 
ranging (LiDAR)-based perception tasks is also studied, for 
example, in [26]. This study, due to the limited availability of 
LiDAR point cloud datasets, uses simulators to automatically 
generate 3-D annotated LiDAR point clouds, and then uses 
that data to train a deep model that incorporates both CNN 
and RNN principles. Since network binarization is associated 
with reductions in computational and memory costs in 2-D 
computer vision tasks, [27] proposes a technique to train bi-
nary volumetric CNNs for 3-D object recognition.

CNN has also been used for extracting features from vi-
bration signals to aid in the diagnosis of faults of a magnet 
synchronous motor [28], fault diagnosis of spindle bearings 
[29], and safety of the pipelines used for liquid petroleum 

transportation [30]. As magnetic flux leakage (MFL) is a 
common testing method for those purposes, the defects are 
identified from MFL images based on CNNs.

RNN
RNNs have been used in the detection of fundamental pha-
sors and the identification of control and protection signals in 
power systems [31], as well as estimating lithium-ion battery 
remaining useful life to achieve an intelligent battery manage-
ment system [32], and supporting predictive models for voltage 
correction in a dc voltage reference source [33]. In nonlinear dy-
namical systems, RNNs are used to tackle the identification 
problem: finding a time-dependent model for the behavior of 
the process generating the data [34], as well as in the modelling 
of dynamic systems in the absence of measurable state variables 
[35]. Another use of RNNs is in modeling of processes that oc-
cur in various industries like steam-raising plants, gas turbines, 
and automotive suspensions [36], since the output of such pro-
cesses has unsymmetrical behavior. Finally, RNNs have been 
used for fault detection: in wireless sensor networks for sensor 
node fault detection [37], health condition monitoring of a ma-
chine [38], or early fault detection in industrial applications [39], 
where a deep neural network is used for feature extraction and 
the LSTM network for distribution estimator.

DBN
A discriminative DBN and ant colony optimization model has 
been built in [40] for the purpose of health condition monitor-
ing of machines. DBN is also used to distinguish acceptable 
and unacceptable segments in an electrocardiogram (ECG) 
signal [41], to reduce false alarms during atrial fibrillation 
detection. Finally, DBN has been used in a soft sensor for esti-
mating the deflection of a polymeric mechanical actuator [42]. 
The latter is based on ionic polymer-metal composites, which 
are used in important fields like robotics and surgery.

Autoencoders
Autoencoders are used in rotating machinery measurements, 
for example in fault identification for rotating machines [43] us-
ing a stacked sparse autoencoders-based deep neural network 
coupled with the concept of compressed sensing, or in studying 
the conditions of rotating machinery [44], where sensors gener-
ate fault signals, and features are extracted from these signals 
and fused by sparse autoencoder (SAE) neural networks. The 
fused features are then classified by a DBN. Another work that 
uses autoencoders for fault diagnosis is based on the analysis of 
vibration signals in wind turbine gearboxes [45], where stacked 
multilevel-denoising autoencoders are used to assist in learn-
ing discriminative representations of fault features.

Localization is another application of autoencoders. For 
example, the human step length in Pedestrian Dead Reckon-
ing systems can be estimated with stacked autoencoders [46].

Finally, deep autoencoders are used for feature extraction 
to mitigate the corruption of Photoplethysmographic (PPG) 
measurements due to motion artifacts in personal healthcare 
systems [47].
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Generative Adversarial Network (GAN)
GAN is one of the newest members of the DL family, and so 
it is not surprising not to see as many applications with GAN 
as with the other DL techniques. Among the papers we stud-
ied, GAN was used to measure the reliability of transmission 
gears [48].

Observations and Future Trends
The following observations can be made from the studied 
literature:

◗◗ The spectrum of applications benefiting from DL is quite 
broad. Researchers from various fields (industrial and 
systems engineering, operations, food control, health 
care, machinery, transportation, image processing, circuit 
design, sensor networks, etc.) are benefiting from DL 
architectures. This ought to drive DL research in I&M 
forward and pave the way for promising solutions to 
known and/or unresolved issues.

◗◗ Several papers stress that their proposed solutions are the 
first to apply DL to their problem of interest. This popular-
ity of using DL is stimulated by the fact that an abundance 
of datasets is becoming available for training DL algo-
rithms. In earlier years, many applications suffered from 
the scarcity of the available training data.

◗◗ There is a strong focus on using CNN. The reason is that 
CNNs are proven to be efficient in computer vision appli-
cations [12], so they are the natural first choice in VBM 
systems. The fact that rich datasets of images and videos 
have been recently made available for training purposes 
boosts the usage of AI and of CNN in particular.

◗◗ A considerable percentage of the publications focus on 
VBM (around 28%) and on fault/defect diagnosis/detec-
tion/prediction (about 25%). Many industry sectors can 
highly benefit from such research.

Despite the above encouraging findings, two clear gaps 
were observed in the limited literature that we searched:

◗◗ The usage of DL in biometric and security systems: DL can 
be an excellent choice to design face recognition, identity 
check, or other types of user identification components 
for security systems.

◗◗ As Industry 4.0 unfolds, it appears as a major area to 
leverage DL. The industrial Internet of Things (IoT) para-
digm in particular appears to be a strong candidate for the 
utilization of DL architectures. Industrial IoT is heavily 
involved in monitoring activities, calibration and control 
of sensor nodes, fault detection, etc., which can bene-
fit from the capabilities of DL. Also, given the fact that a 
huge amount of data is generated and processed within 
an IoT platform, autoencoders can be an efficient tool to 
compress data, which reduces the burden on the commu-
nication system.
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